Solving a Network of Sensors Problem using Gradient Descent

Guntur Ravindra
Senior Member of the ACM

November 9, 2018

1 Problem Formulation

We have multiple sensors in a constellation of sensors each represented by a feature vector $\left(X_{j}, Y_{j}, \alpha_{j}, \beta_{j}\right)$. There are multiple target points T_{i} that these sensors can sense. The target point is represented by a high dimensional feature vector, but for the current discussion we limit it to two dimensions that we refer to as $\left(x_{i}, y_{i}\right)$. Our goal is to find the best values of $\left(\alpha_{j}, \beta_{j}\right)$ so that the estimated value $\left(\widetilde{x_{i}}, \widetilde{y_{i}}\right)$ is as close to the true value for each target T_{i}.

The sensors are independent of each other when they sense the targets T_{i}. Nevertheless, multiple sensors can sense the same target and when they do, we would like the target feature vector to be the same across all the sensors. In addition we have a data collection phase during which each sensor is capable of recording the true value of the feature vector $\left(x_{i}, y_{i}\right)$ in addition to a random variable described later in (1).

2 Conditions and constraints

- We have function $D_{i j}=f\left(\left(x_{i}, y_{i}\right),\left(X_{j}, Y_{j}\right)\right)$ where $D_{i, j} \in \Re$.
- Then we have a relationship of the form

$$
\begin{equation*}
r_{i j k}, \theta_{i j k}=\alpha_{j} \log \left(D_{i j}\right)+\beta_{j} \tag{1}
\end{equation*}
$$

Note how the value of $D_{i, j}$ is independent of the index k and is also independent of $\theta_{i j k}$. Here $\theta_{i j k}$ is an angular direction detected by the $j^{t h}$ sensor for the $i^{t h}$ target T_{i}, and $r_{i j k}$ is a random sensed value. This means for different values of $r_{i, j, k}$ we could have the same value of $D_{i, j}$ according to (1).

- Further the constants α_{j} and β_{j} are dependent only on the sensors. We need to find the optimal value of α_{j} and and β_{j} for each of the j sensors such that for every $r_{i j k}$, the calculated value for $\left(X_{i j k}, Y_{i j k}\right) \Rightarrow\left(\widetilde{x_{i}}, \widetilde{y}_{i}\right)$ for the target point T_{i} is as close as possible to the true feature vector $\left(x_{i}, y_{i}\right)$. This means we have a constraint optimization function of the form

$$
\begin{equation*}
\arg \min _{\alpha_{j}, \beta_{j}} \sum_{j} \frac{1}{N_{j}} \sum_{k} \sum_{i}\left(X_{i j k}-x_{i}\right)^{2}+\left(Y_{i j k}-y_{i}\right)^{2} \tag{2}
\end{equation*}
$$

where $\left(X_{i j k}, Y_{i j k}\right)$ is a calculated feature vector for T_{i} determined using (1). Note that (1) does not have explicit reference to $\left(X_{i j k}, Y_{i j k}\right)$ but we can determine $D_{i j}$. The sensors are directional, in the sense they can determine the direction for $D_{i j}$ defined by $\theta_{i j k}$.

- We define the function $f\left(\left(x_{i}, y_{i}\right),\left(X_{i j k}, Y_{i j k}\right)\right)$ to be the $L 2$ norm. Hence we can find the actual ($X_{i j k}, Y_{i j k}$) from (1) by using the relationship

$$
\begin{equation*}
X_{i j k}=X_{j}+10^{\frac{r_{i j k}-\beta_{j}}{\alpha_{j}}} \cos \left(\theta_{i j k}\right) \quad Y_{i j k}=Y_{j}+10^{\frac{r_{i j k}-\beta_{j}}{\alpha_{j}}} \sin \left(\theta_{i j k}\right) \tag{3}
\end{equation*}
$$

Hence the constraint function (2) is dependent on (1) through the relationship (3).

- Further, we have additional constraints on the range of values for α_{j}, β_{j}, given by

$$
\begin{aligned}
\alpha_{j} & \leq B_{\alpha} \\
\beta_{j} & \leq B_{\beta} \\
\alpha_{j} & >A_{\alpha} \\
\beta_{j} & >A_{\beta} \\
\left(\alpha_{j}^{2}+\beta_{j}^{2}\right) & \leq C
\end{aligned}
$$

3 Solving using Gradient Descent

Because we have constraints on the estimated variables, we assimilate these constraints into the main objective function using Lagrangean relaxation. As a result we have lagrangean multipliers referred to by the symbol λ. The multipliers are given by the relationship (4)

$$
\begin{align*}
& \lambda_{1, j}\left(-\alpha_{j}+A_{\alpha}\right) \leq 0 \lambda_{2, j}\left(\alpha_{j}+B_{\alpha}\right) \leq 0 \tag{4}\\
& \lambda_{3, j}\left(-\beta_{j}+A_{\beta}\right) \leq 0 \lambda_{4, j}\left(\beta_{j}+B_{\beta}\right) \leq 0 \\
& \lambda_{5, j}\left(\alpha_{j}^{2}+\beta_{j}^{2}\right) \leq C
\end{align*}
$$

The partial derivative of the Lagrangean with respect to α_{j} and β_{j} is as below

$$
\begin{array}{r}
\frac{1}{N_{j}} \sum_{k} \sum_{i}\left[2 \times\left(X_{i j k}-X_{i}\right) \frac{\partial X_{i j k}}{\partial \alpha_{j}}+2 \times\left(Y_{i j k}-Y_{i}\right) \frac{\partial Y_{i j k}}{\partial \alpha_{j}}\right]+\frac{\partial}{\partial \alpha_{j}} \\
\left(-\lambda_{1, j}\left(-\alpha_{j}+A_{\alpha}\right)-\lambda_{2, j}\left(\alpha_{j}+B_{\alpha}\right)-\lambda_{3, j}\left(-\beta_{j}+A_{\beta}\right)-\lambda_{4, j}\left(\beta_{j}+B_{\beta}\right)-\lambda_{5, j}\left(\alpha_{j}^{2}+\beta_{j}^{2}-C\right)\right) \\
\frac{1}{N_{j}} \sum_{k} \sum_{i}\left[2 \times\left(X_{i j k}-X_{i}\right) \frac{\partial X_{i j k}}{\partial \beta_{j}}+2 \times\left(Y_{i j k}-Y_{i}\right) \frac{\partial Y_{i j k}}{\partial \beta_{j}}\right]+\frac{\partial}{\partial \beta_{j}} \\
\left(-\lambda_{1, j}\left(-\alpha_{j}+A_{\alpha}\right)-\lambda_{2, j}\left(\alpha_{j}+B_{\alpha}\right)-\lambda_{3, j}\left(-\beta_{j}+A_{\beta}\right)-\lambda_{4, j}\left(\beta_{j}+B_{\beta}\right)-\lambda_{5, j}\left(\alpha_{j}^{2}+\beta_{j}^{2}-C\right)\right)
\end{array}
$$

Because we wish to minimize the error represented by (2), we equate the partial derivatives to zero as below and then solve them.

$$
\begin{align*}
& \frac{1}{N_{j}} \sum_{k} \sum_{i}\left[2 \times A_{i j k} \frac{\partial X_{i j k}}{\partial \alpha_{j}}+2\right.\left.\times B_{i j k} \frac{\partial Y_{i j k}}{\partial \alpha_{j}}\right]+\lambda_{1, j}-\lambda_{2, j}-2 \lambda_{5, j} \alpha_{j}=0 \\
& \Longrightarrow \Delta \alpha_{j}=P+\lambda_{1, j}-\lambda_{2, j}-2 \lambda_{5, j} \alpha_{j}=0 \tag{5}\\
& \frac{1}{N_{j}} \sum_{k} \sum_{i}\left[2 \times A_{i j k} \frac{\partial X_{i j k}}{\partial \beta_{j}}+2\right.\left.\times B_{i j k} \frac{\partial Y_{i j k}}{\partial \beta_{j}}\right]+\lambda_{3, j}-\lambda_{4, j}-2 \lambda_{5, j} \beta_{j}=0 \\
& \Longrightarrow \Delta \beta_{j}=Q+\lambda_{3, j}-\lambda_{4, j}-2 \lambda_{5, j} \beta_{j}=0 \tag{6}
\end{align*}
$$

The relationship between the different different values of the lagrangean multipliers in terms of the differentails is given as below and the terms P and Q are the partial derivative components with respect to α_{j} and β_{j} without the lagrangean multipliers:

$$
\begin{gather*}
\lambda_{1 j}=\frac{2 \alpha_{j} C\left(\alpha_{j}+B_{\alpha}\right)-P\left(\alpha_{j}^{2}+\beta_{j}^{2}\right)\left(\alpha_{j}+B_{\alpha}\right)}{\left(\alpha_{j}^{2}+\beta_{j}^{2}\right)\left[\left(1+\alpha_{j}+A_{\alpha}\right)\left(1+\alpha_{j}+B_{\alpha}\right)-1\right]} \tag{7}\\
\lambda_{2 j}=\frac{P\left(\alpha_{j}^{2}+\beta_{j}^{2}\right)\left(\alpha_{j}+A_{\alpha}\right)-2 \alpha_{j} C\left(\alpha_{j}+A_{\alpha}\right)}{\left(\alpha_{j}^{2}+\beta_{j}^{2}\right)\left[\left(1+\alpha_{j}+A_{\alpha}\right)\left(1+\alpha_{j}+B_{\alpha}\right)-1\right]} \tag{8}\\
\lambda_{3 j}=\frac{2 \beta_{j} C\left(\beta_{j}+B_{\beta}\right)-Q\left(\alpha_{j}^{2}+\beta_{j}^{2}\right)\left(\beta_{j}+B_{\beta}\right)}{\left(\alpha_{j}^{2}+\beta_{j}^{2}\right)\left[\left(1+\beta_{j}+A_{\beta}\right)\left(1+\beta_{j}+B_{\beta}\right)-1\right]} \tag{9}\\
\lambda_{4 j}=\frac{Q\left(\alpha_{j}^{2}+\beta_{j}^{2}\right)\left(\beta_{j}+A_{\beta}\right)-2 \beta_{j} C\left(\beta_{j}+A_{\beta}\right)}{\left(\alpha_{j}^{2}+\beta_{j}^{2}\right)\left[\left(1+\beta_{j}+A_{\beta}\right)\left(1+\beta_{j}+B_{\beta}\right)-1\right]} \tag{10}\\
\lambda_{5, j}=\frac{C}{\alpha_{j}^{2}+\beta_{j}^{2}} \tag{11}
\end{gather*}
$$

We cannot derive a closed form solution by substituting (7)-(11) in (5) and (6). Hence we used gradient descent to find an iterative solution to the system of equations. The update function for α_{j}, β_{j} is given by

$$
\begin{aligned}
\alpha_{j}^{t+1} & =\alpha_{j}^{t}-\tau \Delta \alpha_{j} \\
\beta_{j}^{t+1} & =\beta_{j}^{t}-\tau \Delta \beta_{j}
\end{aligned}
$$

By substituting the updated values of α_{j}, β_{j} in (7)-(11) we get the updated values of the lagrangean multipliers for the next iteration of gradient descent.

4 Implementation

Gradient descent iterations implemented in Python without using any external optimization packages.

