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1 Problem Formulation
We have multiple sensors in a constellation of sensors each represented by a feature vector (Xj , Yj , αj , βj).
There are multiple target points Ti that these sensors can sense. The target point is represented by
a high dimensional feature vector, but for the current discussion we limit it to two dimensions that
we refer to as (xi, yi). Our goal is to find the best values of (αj , βj) so that the estimated value
(x̃i, ỹi) is as close to the true value for each target Ti.

The sensors are independent of each other when they sense the targets Ti. Nevertheless, multiple
sensors can sense the same target and when they do, we would like the target feature vector to
be the same across all the sensors. In addition we have a data collection phase during which each
sensor is capable of recording the true value of the feature vector (xi, yi) in addition to a random
variable described later in (1).

2 Conditions and constraints
• We have function Dij = f ((xi, yi) , (Xj , Yj)) where Di,j ∈ <.

• Then we have a relationship of the form

rijk, θijk = αj log (Dij) + βj (1)

Note how the value of Di,j is independent of the index k and is also independent of θijk. Here
θijk is an angular direction detected by the jth sensor for the ith target Ti, and rijk is a random
sensed value. This means for different values of ri,j,k we could have the same value of Di,j according
to (1).

• Further the constants αjand βj are dependent only on the sensors. We need to find the optimal
value of αj and and βj for each of the j sensors such that for every rijk, the calculated value
for (Xijk, Yijk) ⇒ (x̃i, ỹi) for the target point Ti is as close as possible to the true feature
vector (xi, yi). This means we have a constraint optimization function of the form

arg min
αj ,βj

∑
j

1

Nj

∑
k

∑
i

(Xijk − xi)2 + (Yijk − yi)2 (2)

where (Xijk, Yijk) is a calculated feature vector for Ti determined using (1). Note that (1) does
not have explicit reference to (Xijk, Yijk) but we can determine Dij . The sensors are directional,
in the sense they can determine the direction for Dij defined by θijk.

• We define the function f ((xi, yi) , (Xijk, Yijk)) to be the L2 norm. Hence we can find the
actual (Xijk, Yijk) from (1) by using the relationship
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Xijk = Xj + 10
rijk−βj
αj cos (θijk) Yijk = Yj + 10

rijk−βj
αj sin (θijk) (3)

Hence the constraint function (2) is dependent on (1) through the relationship (3).

• Further, we have additional constraints on the range of values for αj , βj , given by

αj ≤ Bα
βj ≤ Bβ
αj > Aα

βj > Aβ(
α2
j + β2

j

)
≤ C

3 Solving using Gradient Descent
Because we have constraints on the estimated variables, we assimilate these constraints into the
main objective function using Lagrangean relaxation. As a result we have lagrangean multipliers
referred to by the symbol λ. The multipliers are given by the relationship (4)

λ1,j(−αj +Aα) ≤ 0 λ2,j(αj +Bα) ≤ 0 (4)
λ3,j(−βj +Aβ) ≤ 0 λ4,j(βj +Bβ) ≤ 0

λ5,j
(
α2
j + β2

j

)
≤ C

The partial derivative of the Lagrangean with respect to αj and βj is as below

1

Nj

∑
k

∑
i

[
2× (Xijk −Xi)

∂Xijk

∂αj
+ 2× (Yijk − Yi)

∂Yijk
∂αj

]
+

∂

∂αj(
−λ1,j(−αj +Aα)− λ2,j (αj +Bα)− λ3,j (−βj +Aβ)− λ4,j (βj +Bβ)− λ5,j

(
α2
j + β2

j − C
))

1

Nj

∑
k

∑
i

[
2× (Xijk −Xi)

∂Xijk

∂βj
+ 2× (Yijk − Yi)

∂Yijk
∂βj

]
+

∂

∂βj(
−λ1,j(−αj +Aα)− λ2,j (αj +Bα)− λ3,j (−βj +Aβ)− λ4,j (βj +Bβ)− λ5,j

(
α2
j + β2

j − C
))

Because we wish to minimize the error represented by (2), we equate the partial derivatives to
zero as below and then solve them.

1

Nj

∑
k

∑
i

[
2×Aijk

∂Xijk

∂αj
+ 2×Bijk

∂Yijk
∂αj

]
+ λ1,j − λ2,j − 2λ5,jαj = 0

=⇒ ∆αj = P + λ1,j − λ2,j − 2λ5,jαj = 0 (5)

1

Nj

∑
k

∑
i

[
2×Aijk

∂Xijk

∂βj
+ 2×Bijk

∂Yijk
∂βj

]
+ λ3,j − λ4,j − 2λ5,jβj = 0

=⇒ ∆βj = Q+ λ3,j − λ4,j − 2λ5,jβj = 0 (6)
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The relationship between the different different values of the lagrangean multipliers in terms of
the differentails is given as below and the terms P and Q are the partial derivative components
with respect to αj and βj without the lagrangean multipliers:

λ1j =
2αjC (αj +Bα)− P (α2

j + β2
j ) (αj +Bα)(

α2
j + β2

j

)
[(1 + αj +Aα) (1 + αj +Bα)− 1]

(7)

λ2j =
P (α2

j + β2
j ) (αj +Aα)− 2αjC (αj +Aα)(

α2
j + β2

j

)
[(1 + αj +Aα) (1 + αj +Bα)− 1]

(8)

λ3j =
2βjC (βj +Bβ)−Q(α2

j + β2
j ) (βj +Bβ)(

α2
j + β2

j

)
[(1 + βj +Aβ) (1 + βj +Bβ)− 1]

(9)

λ4j =
Q(α2

j + β2
j ) (βj +Aβ)− 2βjC (βj +Aβ)(

α2
j + β2

j

)
[(1 + βj +Aβ) (1 + βj +Bβ)− 1]

(10)

λ5,j =
C

α2
j + β2

j

(11)

We cannot derive a closed form solution by substituting (7)-(11) in (5) and (6). Hence we used
gradient descent to find an iterative solution to the system of equations. The update function for
αj , βj is given by

αt+1
j = αtj − τ∆αj

βt+1
j = βtj − τ∆βj

By substituting the updated values of αj , βj in (7)-(11) we get the updated values of the la-
grangean multipliers for the next iteration of gradient descent.

4 Implementation
Gradient descent iterations implemented in Python without using any external optimization pack-
ages.
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