
HADOOP MAP REDUCE SHUFFLE
PHASE MEASUREMENT

Author: Narender Kumar

HADOOP

SDN

Executive Summary

As we move in the era of mobility, virtualization, and

cloud, traditional approach of networking is unable to

effectively meet the networking needs of our

applications. The need of scalability, fault tolerance,

and minimum complex and cost effective maintenance

of infrastructure is leading to the development of

Software Defined Networking (SDN). For big data,

SDN provides an oversight of the entire network and

enables us to monitor and control data traffic for

improved performance.

This white paper proposes that shuffle time in Hadoop

can be reduced by using an SDN-enabled

infrastructure. Shuffle phase in Hadoop is highly

network intensive. With a centralized SDN-controller,

we can control each flow in the network and provide

alternative routes when there is congestion between

mapper and reducer and thus, reduce the shuffle time.

This paper highlights the techniques to measure

network traffic for shuffle phase of Hadoop

MapReduce jobs running over the SDN-enabled

topology. Our measurements enable us to find the

entire network links utilization metrics and current

network congestion state. These network traffic

measurements can be used to employ traffic control

techniques to improve network performance in

SDN-enabled networks in our future work.

© Talentica Software (I) Pvt Ltd. 2015 2

Background

Hadoop is an open-source framework to write applications that

store and process huge amount of data in a large cluster of

commodity hardware. A MapReduce application in Hadoop

consists of two tasks - map task and reduce task. The input and

output of the tasks are stored in a file system called Hadoop

Distributed File System (HDFS). Hadoop framework takes care

of scheduling, monitoring and executing the tasks on the

cluster, at the same time. The user sets job configuration in

different parameters and submits the job to Hadoop. Hadoop

framework splits the input data into a number of data blocks

and copies it in HDFS with replication depending on the job

configuration. The framework creates a set of map tasks

depending on the number of data blocks and a set of reduce

tasks which also may be configured by the user. The framework

schedules the map tasks on different nodes in the cluster

considering data locality. These nodes execute a user defined

map function on the input data block and convert the individual

data element into a set of key/value pair. After a map task is

completed on a mapper node, the node starts transferring the

sorted map output over the network to the reducer node

where the reduce task will be running. At the same time, the

mapper node might be running other map tasks as well. This

process of transferring the data over the network from the

mapper node to reducer node as input is called shuffle phase.

The mapper nodes in the cluster execute map tasks in parallel

and the shuffle data is transferred to the reducer nodes

simultaneously over the network. Reduce task takes the

shuffled data as input and combines the key/value pairs to

generate the final result.

© Talentica Software (I) Pvt Ltd. 2015 3

The key goals of

this experiment are:

Measure and
validate the data

and time statistics in
shuffle phase in

hadoop in a
SDN-enabled

topology.

Evaluate if there is
scope for shuffle

phase optimization

HADOOP

© Talentica Software (I) Pvt Ltd. 2015 4

During shuffle phase, as there are simultaneous data transfers

occurring from all mapper nodes to the reducer nodes; this may

result in the network getting to the state of congestion thereby

causing delays in transfers resulting in more shuffle time, and

hence slow processing of the job. We can reduce the shuffle time

by minimizing the state of congestion. We propose an

SDN-enabled Hadoop architecture, where an SDN controller

installs the path between mapper and reducer nodes, and

monitors the network. SDN is a networking architecture that

separates the data plane from the control plane in a network and

makes control plane directly programmable. SDN allows users to

write logically centralized dynamic control programs, which

monitor and control behaviour of the entire network. By using

SDN-enabled infrastructure to run Hadoop cluster, we can

monitor current network state and deploy traffic engineering

strategies to minimize congestion, which in turn will reduce the

shuffle time and use distributed resources in a better way.

PROPOSED
ARHICTECTURE

HADOOP

© Talentica Software (I) Pvt Ltd. 2015 5

We want to measure the data transferred and time taken to

transfer in shuffle phase in a Hadoop MapReduce job that runs

over a SDN-enabled topology. The data from a mapper node to a

reducer node is transferred in a number of flows. We are finding

near real-time data and time statistics for each flow in our

experiment and the current link utilization.

To validate our measurements, we are comparing the total

amount of data shuffled and total shuffle time measured in our

experiment, against the data shuffled and shuffle time reported

by Hadoop. We are using Hadoop logs and job history data to get

the shuffle data and time measurements reported by Hadoop.

WHAT TO MEASURE

© Talentica Software (I) Pvt Ltd. 2015 6

PROBLEM STATEMENT - TERASORT

We are running Hadoop TeraSort as a Hadoop MapReduce job

for flow generation in an SDN-enabled topology. TeraSort is a

Hadoop benchmarking tool which can sort any amount of data

quickly. A full TeraSort consists of the following steps:

We are running TeraGen and TeraSort as our experiment only

needs these two steps

TERAGEN: Generate the input data

TeraGen generates random input data. The syntax to run

TeraGen is as follows:

hadoop jar $HADOOP_PREFIX/share/hadoop/mapreduce/

hadoop-*examples*.jar teragen <number of 100-byte rows>

<output dir>

The first parameter specifies the number of rows of input data to

generate, each of which having a size of 100 bytes. The data

format is as follows: <10 bytes key><10 bytes rowid><78 bytes

filler>

TERASORT: Sort the input data

The output from TeraGen is used as an input for TeraSort.The

syntax to run TeraSort is as follows:

hadoop jar $HADOOP_PREFIX/share/hadoop/mapreduce/

hadoop-*examples*.jar terasort <input dir> <output dir>

Generating the input data via TeraGen.

Running the TeraSort on the input data.

Validating the sorted output via TeraValidate.

We sorted data sets with different size (2 GB, 10 GB, 20 GB and

50 GB) in a cluster of 16 nodes connected through an

SDN-enabled fat tree topology as shown in Figure 1 below. In

this experiment, we sort 20GB of data by using six nodes (master,

slave2, slave5, slave9, slave10 and slave16) out of the 16 nodes

from the topology. All the six nodes are running map tasks while

reduce tasks are being executed on two nodes (slave5 and

slave16).

EXPERIMENT SETUP

© Talentica Software (I) Pvt Ltd. 2015 7

Figure 1: Fat Tree Topology

© Talentica Software (I) Pvt Ltd. 2015 8

Topology setup

We used Mininet – an open-source network emulator to

create the topology. Mininet runs a collection of end hosts,

network devices, and links which are created by using

software to make a single system look like a real network.

Mininet provides network isolation to the end hosts from the

host machine. We created the fat tree topology

programmatically by using the Mininet python API. Topology

is constructed with reduced link bandwidth capacity so that

Hadoop MapReduce jobs can be executed at reduced

throughput scale e.g. TeraSort job is executed at the reduced

scale of 20 GB.

Hadoop setup

To run Hadoop over an SDN-enabled topology we swapped

default Mininet hosts with docker containers to obtain

isolation of processes running on end hosts. We used docker -

an open-source virtualization application which provides

lightweight containers that run processes in isolation with

each other to create sixteen lightweight containers as end

hosts. To run Hadoop TeraSort on end hosts, we created one

docker image having Hadoop installed on Ubuntu. While

creating docker containers as end hosts in Mininet topology,

we are starting each host container from the Hadoop docker

image.

Flow Forwarding & Monitoring

We used OpenNetMon – a POX OpenFlow controller module,

which monitors per packet flowing in the network.

OpenNetMon provides forwarding component, which is used

to route the packets and monitoring component responsible

for monitoring the flows. Forwarding is done over a spanning

tree of topology, and Bellman Ford algorithm is used to

calculate the shortest path between the source and

destination. Both these components are dependent on POX

discovery module, which is responsible for learning the

network topology. We used Apache Rumen to extract and

analyse Hadoop job history data that provides us time and

data statistics measured from Hadoop.

Configuration

Topology Nodes CPU Memory Block SizeLinks Bandwidth

Fat Free 16 64-bit 16 GB 128 MB1000 mbps - core switches and aggregation switches

100 mbps - aggregation switches and edge switches

100 mbps - edge switches and end hosts

© Talentica Software (I) Pvt Ltd. 2015 9

Running the Experiment

We can specify the hosts from the topology that we want to

use to run Hadoop job by adding the hosts in

/usr/local/hadoop/etc/hadoop/slaves file. As we are starting

each host from the Hadoop docker image, each host gets the

Hadoop configuration from the image. We may change the

Hadoop configuration files in all hosts according to our needs.

After formatting the Hadoop distributed file system via

NameNode that are running on master node, start the

MapReduce daemons, and run Hadoop TeraSort.

A brief overview of the steps is as follows:

TeraGen

Using output directory as teraInput and Hadoop version 2.7.1,

run below command to generate 20GB of input data.

hadoop jar $HADOOP_PREFIX/share/hadoop/mapreduce/

hadoop-mapreduce-examples-2.7.1.jar teragen 200000000

/teraInput

There are no reducer tasks taking place in TeraGen.

TeraSort:

Using input directory as teraInput, output directory as

teraOutput and Hadoop version 2.7.1, run the below command

to sort 20GB of input data.

hadoop jar $HADOOP_PREFIX/share/hadoop/mapreduce/

hadoop-mapreduce-examples-2.7.1.jar

-Dmapreduce.job.reduces=2 terasort /teraInput /teraOutput

There are two reduce tasks which are taking place on reducer

nodes (slave5 and slave16).

© Talentica Software (I) Pvt Ltd. 2015 10

We used the OpenNetMon to measure data and time over

network. It periodically sends probe-packets to edge switches at

a pre-defined rate to obtain the flow statistics. With each query,

OpenNetMon receives the amount of data sent and time taken

for data transfer, and generates csv files that are used to obtain

the time and data statistics over network. We analysed per

node-to-node communication and measured the amount of data

being sent to each other in different flows. We also measured the

time taken to transfer the data from a mapper node to a reducer

node over network in the experiment. Hadoop logs reports of

start and finish time for each mapper task, shuffle finish time, and

the amount of data which is ready to shuffle after a map task is

completed at each mapper node. When TeraSort is done, we used

Hadoop logs and Hadoop job history data to extract task-level

details. We extracted information of all the map tasks, reduce

tasks, and the nodes where they are getting executed. We

aggregated node wise map tasks and the amount of shuffle data

transferred to the reducer nodes.

We present detailed comparison of shuffle data and time

measured using OpenNetMon against values reported by

Hadoop.

MEASUREMENT AND

ANALYSIS

© Talentica Software (I) Pvt Ltd. 2015 11

Table 1 below presents a comparison of total shuffle data from

all the mapper nodes to both the reducer nodes:

Reducer Nodes OpenNetMon(in GB)Hadoop(in GB)

Slave5 8.268.15

Slave16 8.768.68

Table 1: Shuffle Data Comparison

Table 2 below presents comparison of mapper wise shuffle

data to slave5:

Mapper Nodes OpenNetMon(in GB)Hadoop(in GB)

Master 2.062.01

Slave10 1.501.49

Slave2 2.092.07

Slave9 1.561.55

Slave16 1.051.04

Table 2: Data Comparison - Slave5

Table 3 below presents comparison of mapper wise shuffle

data to slave16:

Mapper Nodes OpenNetMon(in GB)Hadoop(in GB)

Master 2.082.06

Slave10 1.551.53

Slave2 2.102.09

Slave9 1.591.57

Slave5 1.451.44

Table 3: Data Comparison - Slave16

© Talentica Software (I) Pvt Ltd. 2015 12

For detailed data and time comparison please refer to

Appendix A.

Figure 2 below represents the paths from mapper nodes to

reducer node. In our experiment, all flows from a mapper node

to reducer nodes are following the same path. We can clearly

see the links which are being used the most. The congestion

may occur in these links if bandwidth of these links is

insufficient to carry out all the transfers. As specified above,

OpenNetMon installs path over a spanning tree in this

topology, we can clearly see that there are alternative paths

available that are not being used to reach from mapper nodes

to the reducer node.

Figure 2: Paths from mapper nodes to reducer nodes

© Talentica Software (I) Pvt Ltd. 2015 13

HADOOP

We are able to set up Hadoop on an SDN-enabled topology by

using Mininet and lightweight docker containers. This setup can

be used as an SDN testbed. Hadoop MapReduce jobs are

successfully run on this setup. Using SDN controller, flow tables

are installed and data transferred and time for transfer are

measured for all flows generated by Hadoop MapReduce Shuffle

phase. We are able to find the flow paths between mapper and

reducer nodes. Data transferred and time taken to transfer in

shuffle phase is calculated by using Hadoop logs. Shuffle phase

data transferred and time for transfer closely matches with both

Hadoop and SDN controller. We are able to find the near real

time data flows in entire network and the links which are being

used the most and may be congested. We are able to find the

alternative paths available which can be used to reduce shuffle

time using one of the effective routing techniques.

We present detailed comparison of shuffle data and time

measured using OpenNetMon against values reported by

Hadoop.

CONCLUSION

© Talentica Software (I) Pvt Ltd. 2015 14

These measurements can be used by traffic engineering solution

to find the optimal path for flows and rerouting the flows to

reduce the shuffle phase time. These network traffic

measurements can be used to employ traffic control techniques

to improve network performance in SDN enabled networks in

our future work.

Figure 3 represents the shuffle time comparison between the

times calculated using Hadoop logs and data transfer time

calculated using OpenNetMon. On the time axis, the start and

end of shuffle time is relative to Hadoop job submit time

(Hadoop job submit time is represented as zero millisecond on

time axis). Our time calculations in the experiment are relative to

Hadoop job submit time. The amount of data which is being

shuffled or transferred has been mentioned on top of each bar.

The green bars are representing shuffle time calculated using

Hadoop logs. The orange bars are representing shuffle time

measured in our experiment. The first green bar is representing

shuffle time from mapper nodes (master, slave2, slave9, slave10

and slave16) to reducer node (slave5). The second green bar is

representing shuffle from mapper nodes (master, slave2, slave5,

slave9 and slave10) to reducer node (slave16). The two other

bars are representing time taken for shuffle data transfers from

mapper nodes to reducer nodes (slave5 and slave16) calculated

using OpenNetMon. Figure 4 is further drill down to these two

bars. The first two bars are same as in Figure 3 the remaining

bars are representing the shuffle time from each mapper node to

each reducer node.

FUTURE WORK

APPENDIX A

© Talentica Software (I) Pvt Ltd. 2015 15

© Talentica Software (I) Pvt Ltd. 2015 16

Figure 3: Shuffle time comparison

Figure 4: Shuffle time comparison (each mapper node to each reducer node)

We can clearly see that the total time taken for the data

transfers measured in our experiment is matching with the

shuffle time reported by Hadoop logs.

Figure 5 represents data received on each reducer in shuffle

phase. The first two columns represent data received by reducer

node (slave5) from mapper nodes (master, slave10, slave2, slave9

and slave16). The other two columns represent data received by

reducer node (slave16) from mapper nodes (master, slave10,

slave2, slave9 and slave5). The first and third column represents

shuffle data measured in our experiment using OpenNetMon

and second and fourth column represents shuffle data reported

by Hadoop logs.

Figure 5: Data transferred from each mapper to reducer

We can clearly see that the shuffle data measured by our

experiment using OpenNetMon is matching with the shuffle data

reported by Hadoop logs.

Figure 6, Figure 8 and Figure 10 are representing per mapper

node map tasks (shown in green bars) reported by Hadoop and

shuffle flows (violet bars are representing shuffle flows to

reducer node-slave16 and brown bars represent the shuffle

flows to reduce node-slave5) found in our experiment. From the

time values we can see that there are simultaneous data

transfers from a mapper node to both the reducer nodes.

Figure 7, Figure 9 and Figure 11 are representing the dynamics

of shuffle flows from mapper nodes to each reducer node found

in our experiment. Each line in the figures represents a shuffle

flow. Each figure represents the amount of data transferred from

a mapper node to the reducer node at a point of time for a

particular flow.

Referring Figure 6, there are shuffle data transfers to both the

reducer nodes from master node. Data transfer to reducer

node-slave16 starts after finishing of first map task. In our

experiment, we found that there are four flows in each transfer

from master to slave5 and slave16.

© Talentica Software (I) Pvt Ltd. 2015 17

Figure6: Map tasks and shuffle flows from master

Figure7 represents the dynamics of shuffle flows from master to

the reducer nodes. Master node is sending data to both the

reducer nodes simultaneously. As mentioned above, the time

calculations are relative to job submit time. The slope of line is an

indicator of data transfer rate. Steeper slope means higher value

of data transfer rate. We can clearly see that when the link is

occupied by a single flow, data transfer rate is higher.

© Talentica Software (I) Pvt Ltd. 2015 18

Figure7: Shuffle flows from master node

Figure 8: Map tasks and shuffle flows from slave10

© Talentica Software (I) Pvt Ltd. 2015 19

Figure 9: Shuffle flows from slave10

Figure 10: Map tasks and shuffle flows from slave2

© Talentica Software (I) Pvt Ltd. 2015 20

Figure 11: Shuffle flows from slave2

Figure 12: Map tasks and shuffle flows from slave9

© Talentica Software (I) Pvt Ltd. 2015 21

Figure 13: Shuffle flows from slave9

Figure 14: Map tasks and shuffle flows from slave16

Figure14 represents map tasks and shuffle flows from slave16.

The shuffle transfer from slave16 is to slave5 only. There are

three shuffle flows from slave 16.

© Talentica Software (I) Pvt Ltd. 2015 22

Figure 15: Shuffle flows from slave16

Figure 16: Map tasks and shuffle flows from slave5

Figure16 represents map tasks and shuffle flows from slave5.

The shuffle transfer from slave5 is to slave16 only. There are four

shuffle flows from slave5.

© Talentica Software (I) Pvt Ltd. 2015 23

HADOOP

Figure 17: Shuffle flows from slave5

© Talentica Software (I) Pvt Ltd. 2015 24

HADOOP

© Talentica Software (I) Pvt Ltd. 2015

ADDITIONAL
RESOURCES

https://en.wikipedia.org/wiki/Software-defined_netwo

rking

https://github.com/TUDelftNAS/SDN-OpenNetMon

https://openflow.stanford.edu/display/ONL/POX+Wiki

https://hadoop.apache.org/docs/r1.2.1/rumen.html

https://github.com/docker/docker

25

Talentica Software is an innovative outsourced

product development company that helps startups

build their own products. We help technology

companies transform their ideas into successful

products by partnering in their roadmap from

pre-funded startups to a profitable acquisition.

We have successfully built core intellectual property

for more than 60 customers so far. We have the deep

technological expertise, proven track record and

unique methodology to build products successfully.

Our customers include some of the most innovative

product companies across USA, Europe and India.

About Talentica

HADOOP

Office No. 501, Amar Megaplex
Baner, Pune 411045

Tel: +91 20 4660 4000 | Fax: +91 20 4075 6699

www.talentica.com

