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Executive Summary

As we move in the era of mobility, virtualization, and 

cloud, traditional approach of networking is unable to 

effectively meet the networking needs of our 

applications. The need of scalability, fault tolerance, 

and minimum complex and cost effective maintenance 

of infrastructure is leading to the development of 

Software Defined Networking (SDN). For big data, 

SDN provides an oversight of the entire network and 

enables us to monitor and control data traffic for 

improved performance. 

This white paper proposes that shuffle time in Hadoop 

can be reduced by using an SDN-enabled 

infrastructure. Shuffle phase in Hadoop is highly 

network intensive. With a centralized SDN-controller, 

we can control each flow in the network and provide 

alternative routes when there is congestion between 

mapper and reducer and thus, reduce the shuffle time. 

This paper highlights the techniques to measure 

network traffic for shuffle phase of Hadoop 

MapReduce jobs running over the SDN-enabled 

topology. Our measurements enable us to find the 

entire network links utilization metrics and current 

network congestion state. These network traffic 

measurements can be used to employ traffic control 

techniques to improve network performance in 

SDN-enabled networks in our future work.
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Background

Hadoop is an open-source framework to write applications that 

store and process huge amount of data in a large cluster of 

commodity hardware. A MapReduce application in Hadoop 

consists of two tasks - map task and reduce task. The input and 

output of the tasks are stored in a file system called Hadoop 

Distributed File System (HDFS). Hadoop framework takes care 

of scheduling, monitoring and executing the tasks on the 

cluster, at the same time. The user sets job configuration in 

different parameters and submits the job to Hadoop. Hadoop 

framework splits the input data into a number of data blocks 

and copies it in HDFS with replication depending on the job 

configuration. The framework creates a set of map tasks 

depending on the number of data blocks and a set of reduce 

tasks which also may be configured by the user. The framework 

schedules the map tasks on different nodes in the cluster 

considering data locality. These nodes execute a user defined 

map function on the input data block and convert the individual 

data element into a set of key/value pair. After a map task is 

completed on a mapper node, the node starts transferring the 

sorted map output over the network to the reducer node 

where the reduce task will be running. At the same time, the 

mapper node might be running other map tasks as well. This 

process of transferring the data over the network from the 

mapper node to reducer node as input is called shuffle phase. 

The mapper nodes in the cluster execute map tasks in parallel 

and the shuffle data is transferred to the reducer nodes 

simultaneously over the network. Reduce task takes the 

shuffled data as input and combines the key/value pairs to 

generate the final result.
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The key goals of 

this experiment are:

Measure and 
validate the data 

and time statistics in 
shuffle phase in 

hadoop in a
SDN-enabled

topology.

Evaluate if there is 
scope for shuffle 

phase optimization
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During shuffle phase, as there are simultaneous data transfers 

occurring from all mapper nodes to the reducer nodes; this may 

result in the network getting to the state of congestion thereby 

causing delays in transfers resulting in more shuffle time, and 

hence slow processing of the job. We can reduce the shuffle time 

by minimizing the state of congestion. We propose an 

SDN-enabled Hadoop architecture, where an SDN controller 

installs the path between mapper and reducer nodes, and 

monitors the network. SDN is a networking architecture that 

separates the data plane from the control plane in a network and 

makes control plane directly programmable. SDN allows users to 

write logically centralized dynamic control programs, which 

monitor and control behaviour of the entire network. By using 

SDN-enabled infrastructure to run Hadoop cluster, we can 

monitor current network state and deploy traffic engineering 

strategies to minimize congestion, which in turn will reduce the 

shuffle time and use distributed resources in a better way. 

PROPOSED
ARHICTECTURE
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We want to measure the data transferred and time taken to 

transfer in shuffle phase in a Hadoop MapReduce job that runs 

over a SDN-enabled topology. The data from a mapper node to a 

reducer node is transferred in a number of flows. We are finding 

near real-time data and time statistics for each flow in our 

experiment and the current link utilization. 

To validate our measurements, we are comparing the total 

amount of data shuffled and total shuffle time measured in our 

experiment, against the data shuffled and shuffle time reported 

by Hadoop. We are using Hadoop logs and job history data to get 

the shuffle data and time measurements reported by Hadoop.

WHAT TO MEASURE
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PROBLEM STATEMENT - TERASORT

We are running Hadoop TeraSort as a Hadoop MapReduce job 

for flow generation in an SDN-enabled topology. TeraSort is a 

Hadoop benchmarking tool which can sort any amount of data 

quickly. A full TeraSort consists of the following steps:

We are running TeraGen and TeraSort as our experiment only 

needs these two steps

TERAGEN: Generate the input data

TeraGen generates random input data. The syntax to run 

TeraGen is as follows:

hadoop jar $HADOOP_PREFIX/share/hadoop/mapreduce/

hadoop-*examples*.jar teragen <number of 100-byte rows> 

<output dir>

The first parameter specifies the number of rows of input data to 

generate, each of which having a size of 100 bytes. The data 

format is as follows: <10 bytes key><10 bytes rowid><78 bytes 

filler>

TERASORT: Sort the input data

The output from TeraGen is used as an input for TeraSort.The 

syntax to run TeraSort is as follows:

hadoop jar $HADOOP_PREFIX/share/hadoop/mapreduce/

hadoop-*examples*.jar terasort <input dir> <output dir>

Generating the input data via TeraGen.

Running the TeraSort on the input data.

Validating the sorted output via TeraValidate.



We sorted data sets with different size (2 GB, 10 GB, 20 GB and 

50 GB) in a cluster of 16 nodes connected through an  

SDN-enabled fat tree topology as shown in Figure 1 below. In 

this experiment, we sort 20GB of data by using six nodes (master, 

slave2, slave5, slave9, slave10 and slave16) out of the 16 nodes 

from the topology. All the six nodes are running map tasks while 

reduce tasks are being executed on two nodes (slave5 and 

slave16). 

EXPERIMENT SETUP
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Figure 1: Fat Tree Topology
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Topology setup

We used Mininet – an open-source network emulator to 

create the topology. Mininet runs a collection of end hosts, 

network devices, and links which are created by using 

software to make a single system look like a real network. 

Mininet provides network isolation to the end hosts from the 

host machine. We created the fat tree topology 

programmatically by using the Mininet python API. Topology 

is constructed with reduced link bandwidth capacity so that 

Hadoop MapReduce jobs can be executed at reduced 

throughput scale e.g. TeraSort job is executed at the reduced 

scale of 20 GB.

Hadoop setup

To run Hadoop over an SDN-enabled topology we swapped 

default Mininet hosts with docker containers to obtain 

isolation of processes running on end hosts. We used docker - 

an open-source virtualization application which provides 

lightweight containers that run processes in isolation with 

each other to create sixteen lightweight containers as end 

hosts. To run Hadoop TeraSort on end hosts, we created one 

docker image having Hadoop installed on Ubuntu. While 

creating docker containers as end hosts in Mininet topology, 

we are starting each host container from the Hadoop docker 

image.



Flow Forwarding & Monitoring

We used OpenNetMon – a POX OpenFlow controller module, 

which monitors per packet flowing in the network. 

OpenNetMon provides forwarding component, which is used 

to route the packets and monitoring component responsible 

for monitoring the flows. Forwarding is done over a spanning 

tree of topology, and Bellman Ford algorithm is used to 

calculate the shortest path between the source and 

destination. Both these components are dependent on POX 

discovery module, which is responsible for learning the 

network topology. We used Apache Rumen to extract and 

analyse Hadoop job history data that provides us time and 

data statistics measured from Hadoop.

Configuration

Topology Nodes CPU Memory Block SizeLinks Bandwidth

Fat Free 16 64-bit 16 GB 128 MB1000 mbps - core switches and aggregation switches

100 mbps - aggregation switches and edge switches

100 mbps - edge switches and end hosts
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Running the Experiment 

We can specify the hosts from the topology that we want to 

use to run Hadoop job by adding the hosts in 

/usr/local/hadoop/etc/hadoop/slaves file.  As we are starting 

each host from the Hadoop docker image, each host gets the 

Hadoop configuration from the image. We may change the 

Hadoop configuration files in all hosts according to our needs. 

After formatting the Hadoop distributed file system via 

NameNode that are running on master node, start the 

MapReduce daemons, and run Hadoop TeraSort.

A brief overview of the steps is as follows:

TeraGen

Using output directory as teraInput and Hadoop version 2.7.1, 

run below command to generate 20GB of input data.

hadoop jar $HADOOP_PREFIX/share/hadoop/mapreduce/

hadoop-mapreduce-examples-2.7.1.jar teragen 200000000 

/teraInput

There are no reducer tasks taking place in TeraGen.

TeraSort:

Using input directory as teraInput, output directory as 

teraOutput and Hadoop version 2.7.1, run the below command 

to sort 20GB of input data.

hadoop jar $HADOOP_PREFIX/share/hadoop/mapreduce/

hadoop-mapreduce-examples-2.7.1.jar 

-Dmapreduce.job.reduces=2  terasort /teraInput /teraOutput

There are two reduce tasks which are taking place on reducer 

nodes (slave5 and slave16).
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We used the OpenNetMon to measure data and time over 

network. It periodically sends probe-packets to edge switches at 

a pre-defined rate to obtain the flow statistics. With each query, 

OpenNetMon receives the amount of data sent and time taken 

for data transfer, and generates csv files that are used to obtain 

the time and data statistics over network. We analysed per 

node-to-node communication and measured the amount of data 

being sent to each other in different flows. We also measured the 

time taken to transfer the data from a mapper node to a reducer 

node over network in the experiment. Hadoop logs reports of 

start and finish time for each mapper task, shuffle finish time, and 

the amount of data which is ready to shuffle after a map task is 

completed at each mapper node. When TeraSort is done, we used 

Hadoop logs and Hadoop job history data to extract task-level 

details. We extracted information of all the map tasks, reduce 

tasks, and the nodes where they are getting executed. We 

aggregated node wise map tasks and the amount of shuffle data 

transferred to the reducer nodes. 

We present detailed comparison of shuffle data and time 

measured using OpenNetMon against values reported by 

Hadoop.

MEASUREMENT AND 

ANALYSIS
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Table 1 below presents a comparison of total shuffle data from 

all the mapper nodes to both the reducer nodes:

Reducer Nodes OpenNetMon(in GB)Hadoop(in GB)

Slave5 8.268.15

Slave16 8.768.68

Table 1: Shuffle Data Comparison

Table 2 below presents comparison of mapper wise shuffle 

data to slave5:

Mapper Nodes OpenNetMon(in GB)Hadoop(in GB)

Master 2.062.01

Slave10 1.501.49

Slave2 2.092.07

Slave9 1.561.55

Slave16 1.051.04

Table 2: Data Comparison - Slave5

Table 3 below presents comparison of mapper wise shuffle 

data to slave16:

Mapper Nodes OpenNetMon(in GB)Hadoop(in GB)

Master 2.082.06

Slave10 1.551.53

Slave2 2.102.09

Slave9 1.591.57

Slave5 1.451.44

Table 3: Data Comparison - Slave16
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For detailed data and time comparison please refer to 

Appendix A.

Figure 2 below represents the paths from mapper nodes to 

reducer node. In our experiment, all flows from a mapper node 

to reducer nodes are following the same path. We can clearly 

see the links which are being used the most. The congestion 

may occur in these links if bandwidth of these links is 

insufficient to carry out all the transfers.  As specified above, 

OpenNetMon installs path over a spanning tree in this 

topology, we can clearly see that there are alternative paths 

available that are not being used to reach from mapper nodes 

to the reducer node. 

Figure 2: Paths from mapper nodes to reducer nodes
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HADOOP

We are able to set up Hadoop on an SDN-enabled topology by 

using Mininet and lightweight docker containers. This setup can 

be used as an SDN testbed. Hadoop MapReduce jobs are 

successfully run on this setup. Using SDN controller, flow tables 

are installed and data transferred and time for transfer are 

measured for all flows generated by Hadoop MapReduce Shuffle 

phase. We are able to find the flow paths between mapper and 

reducer nodes. Data transferred and time taken to transfer in 

shuffle phase is calculated by using Hadoop logs. Shuffle phase 

data transferred and time for transfer closely matches with both 

Hadoop and SDN controller. We are able to find the near real 

time data flows in entire network and the links which are being 

used the most and may be congested. We are able to find the 

alternative paths available which can be used to reduce shuffle 

time using one of the effective routing techniques.

We present detailed comparison of shuffle data and time 

measured using OpenNetMon against values reported by 

Hadoop.

CONCLUSION
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These measurements can be used by traffic engineering solution 

to find the optimal path for flows and rerouting the flows to 

reduce the shuffle phase time. These network traffic 

measurements can be used to employ traffic control techniques 

to improve network performance in SDN enabled networks in 

our future work.

Figure 3 represents the shuffle time comparison between the 

times calculated using Hadoop logs and data transfer time 

calculated using OpenNetMon. On the time axis, the start and 

end of shuffle time is relative to Hadoop job submit time 

(Hadoop job submit time is represented as zero millisecond on 

time axis). Our time calculations in the experiment are relative to 

Hadoop job submit time. The amount of data which is being 

shuffled or transferred has been mentioned on top of each bar. 

The green bars are representing shuffle time calculated using 

Hadoop logs. The orange bars are representing shuffle time 

measured in our experiment. The first green bar is representing 

shuffle time from mapper nodes (master, slave2, slave9, slave10 

and slave16) to reducer node (slave5). The second green bar is 

representing shuffle from mapper nodes (master, slave2, slave5, 

slave9 and slave10) to reducer node (slave16). The two other 

bars are representing time taken for shuffle data transfers from 

mapper nodes to reducer nodes (slave5 and slave16) calculated 

using OpenNetMon. Figure 4 is further drill down to these two 

bars. The first two bars are same as in Figure 3 the remaining 

bars are representing the shuffle time from each mapper node to 

each reducer node.

FUTURE WORK

APPENDIX A
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Figure 3: Shuffle time comparison 

Figure 4: Shuffle time comparison (each mapper node to each reducer node)

We can clearly see that the total time taken for the data 

transfers measured in our experiment is matching with the 

shuffle time reported by Hadoop logs. 

Figure 5 represents data received on each reducer in shuffle 

phase. The first two columns represent data received by reducer 

node (slave5) from mapper nodes (master, slave10, slave2, slave9 

and slave16). The other two columns represent data received by 

reducer node (slave16) from mapper nodes (master, slave10, 

slave2, slave9 and slave5). The first and third column represents 

shuffle data measured in our experiment using OpenNetMon 

and second and fourth column represents shuffle data reported 

by Hadoop logs.



Figure 5: Data transferred from each mapper to reducer

We can clearly see that the shuffle data measured by our 

experiment using OpenNetMon is matching with the shuffle data 

reported by Hadoop logs. 

Figure 6, Figure 8 and Figure 10 are representing per mapper 

node map tasks (shown in green bars) reported by Hadoop and 

shuffle flows (violet bars are representing shuffle flows to 

reducer node-slave16 and brown bars represent the shuffle 

flows to reduce node-slave5) found in our experiment. From the 

time values we can see that there are simultaneous data 

transfers from a mapper node to both the reducer nodes.

Figure 7, Figure 9 and Figure 11 are representing the dynamics 

of shuffle flows from mapper nodes to each reducer node found 

in our experiment. Each line in the figures represents a shuffle 

flow. Each figure represents the amount of data transferred from 

a mapper node to the reducer node at a point of time for a 

particular flow.

Referring Figure 6, there are shuffle data transfers to both the 

reducer nodes from master node. Data transfer to reducer 

node-slave16 starts after finishing of first map task. In our 

experiment, we found that there are four flows in each transfer 

from master to slave5 and slave16. 
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Figure6: Map tasks and shuffle flows from master

Figure7 represents the dynamics of shuffle flows from master to 

the reducer nodes. Master node is sending data to both the 

reducer nodes simultaneously. As mentioned above, the time 

calculations are relative to job submit time. The slope of line is an 

indicator of data transfer rate. Steeper slope means higher value 

of data transfer rate. We can clearly see that when the link is 

occupied by a single flow, data transfer rate is higher.
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Figure7: Shuffle flows from master node

Figure 8: Map tasks and shuffle flows from slave10
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Figure 9: Shuffle flows from slave10

Figure 10: Map tasks and shuffle flows from slave2
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Figure 11: Shuffle flows from slave2

Figure 12: Map tasks and shuffle flows from slave9
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Figure 13: Shuffle flows from slave9

Figure 14: Map tasks and shuffle flows from slave16

Figure14 represents map tasks and shuffle flows from slave16. 

The shuffle transfer from slave16 is to slave5 only. There are 

three shuffle flows from slave 16.
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Figure 15: Shuffle flows from slave16

Figure 16: Map tasks and shuffle flows from slave5

Figure16 represents map tasks and shuffle flows from slave5. 

The shuffle transfer from slave5 is to slave16 only. There are four 

shuffle flows from slave5.
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Figure 17: Shuffle flows from slave5
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ADDITIONAL 
RESOURCES

https://en.wikipedia.org/wiki/Software-defined_netwo

rking

https://github.com/TUDelftNAS/SDN-OpenNetMon

https://openflow.stanford.edu/display/ONL/POX+Wiki

https://hadoop.apache.org/docs/r1.2.1/rumen.html

https://github.com/docker/docker
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